Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Neuroimage Clin ; 38: 103410, 2023.
Article in English | MEDLINE | ID: covidwho-2300474

ABSTRACT

OBJECTIVES: To explore the neuropsychological profile and the integrity of the olfactory network in patients with COVID-19-related persistent olfactory dysfunction (OD). METHODS: Patients with persistent COVID-19-related OD underwent olfactory assessment with Sniffin' Sticks and neuropsychological evaluation. Additionally, both patients and a control group underwent brain MRI, including T1-weighted and resting-state functional MRI (rs-fMRI) sequences on a 3 T scanner. Morphometrical properties were evaluated in olfaction-associated regions; the rs-fMRI data were analysed using graph theory at the whole-brain level and within a standard parcellation of the olfactory functional network. All the MR-derived quantities were compared between the two groups and their correlation with clinical scores in patients were explored. RESULTS: We included 23 patients (mean age 37 ± 14 years, 12 females) with persistent (mean duration 11 ± 5 months, range 2-19 months) COVID-19-related OD (mean score 23.63 ± 5.32/48, hyposmia cut-off: 30.75) and 26 sex- and age-matched healthy controls. Applying population-derived cut-off values, the two cognitive domains mainly impaired were visuospatial memory and executive functions (17 % and 13 % of patients). Brain MRI did not show gross morphological abnormalities. The lateral orbital cortex, hippocampus, and amygdala volumes exhibited a reduction trend in patients, not significant after the correction for multiple comparisons. The olfactory bulb volumes did not differ between patients and controls. Graph analysis of the functional olfactory network showed altered global and local properties in the patients' group (n = 19, 4 excluded due to artifacts) compared to controls. Specifically, we detected a reduction in the global modularity coefficient, positively correlated with hyposmia severity, and an increase of the degree and strength of the right thalamus functional connections, negatively correlated with short-term verbal memory scores. DISCUSSION: Patients with persistent COVID-19-related OD showed an altered olfactory network connectivity correlated with hyposmia severity and neuropsychological performance. No significant morphological alterations were found in patients compared with controls.


Subject(s)
COVID-19 , Cognitive Dysfunction , Olfaction Disorders , Female , Humans , Infant , Smell , Olfaction Disorders/diagnostic imaging , Olfaction Disorders/etiology , Anosmia , Cognition
2.
Ann Clin Transl Neurol ; 10(2): 195-203, 2023 02.
Article in English | MEDLINE | ID: covidwho-2253606

ABSTRACT

OBJECTIVE: This research aims to study structural brain changes in patients with persistent olfactory dysfunctions after coronavirus disease 2019 (COVID-19). METHODS: COVID-19 patients were evaluated using T1-weighted and diffusion tensor imaging (DTI) on a 3T MRI scanner, 9.94 ± 3.83 months after COVID-19 diagnosis. Gray matter (GM) voxel-based morphometry was performed using FSL-VBM. Voxelwise statistical analysis of the fractional anisotropy, mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity was carried out with the tract-based spatial statistics in the olfactory system. The smell identification test (UPSIT) was used to classify patients as normal olfaction or olfactory dysfunction groups. Intergroup comparisons between GM and DTI measures were computed, as well as correlations with the UPSIT scores. RESULTS: Forty-eight COVID-19 patients were included in the study. Twenty-three were classified as olfactory dysfunction, and 25 as normal olfaction. The olfactory dysfunction group had lower GM volume in a cluster involving the left amygdala, insular cortex, parahippocampal gyrus, frontal superior and inferior orbital gyri, gyrus rectus, olfactory cortex, caudate, and putamen. This group also showed higher MD values in the genu of the corpus callosum, the orbitofrontal area, the anterior thalamic radiation, and the forceps minor; and higher RD values in the anterior corona radiata, the genu of the corpus callosum, and uncinate fasciculus compared with the normal olfaction group. The UPSIT scores for the whole sample were negatively associated with both MD and RD values (p-value ≤0.05 FWE-corrected). INTERPRETATION: There is decreased GM volume and increased MD in olfactory-related regions explaining prolonged olfactory deficits in post-acute COVID-19 patients.


Subject(s)
COVID-19 , Olfaction Disorders , Humans , Smell , Diffusion Tensor Imaging/methods , COVID-19 Testing , COVID-19/complications , COVID-19/diagnostic imaging , Brain/diagnostic imaging , Olfaction Disorders/diagnostic imaging , Olfaction Disorders/etiology
3.
J Neurol ; 270(3): 1195-1206, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2174130

ABSTRACT

BACKGROUND AND OBJECTIVE: Despite olfactory disorders being among the most common neurological complications of coronavirus disease 2019 (COVID-19), their pathogenesis has not been fully elucidated yet. Brain MR imaging is a consolidated method for evaluating olfactory system's morphological modification, but a few quantitative studies have been published so far. The aim of the study was to provide MRI evidence of olfactory system alterations in patients with COVID-19 and neurological symptoms, including olfactory dysfunction. METHODS: 196 COVID-19 patients (median age: 53 years, 56% females) and 39 controls (median age 55 years, 49% females) were included in this cross-sectional observational study; 78 of the patients reported olfactory loss as the only neurological symptom. MRI processing was performed by ad-hoc semi-automatic processing procedures. Olfactory bulb (OB) volume was measured on T2-weighted MRI based on manual tracing and normalized to the brain volume. Olfactory tract (OT) median signal intensity was quantified on fluid attenuated inversion recovery (FLAIR) sequences, after preliminary intensity normalization. RESULTS: COVID-19 patients showed significantly lower left, right and total OB volumes than controls (p < 0.05). Age-related OB atrophy was found in the control but not in the patient population. No significant difference was found between patients with olfactory disorders and other neurological symptoms. Several outliers with abnormally high OT FLAIR signal intensity were found in the patient group. CONCLUSIONS: Brain MRI findings demonstrated OB damage in COVID-19 patients with neurological complications. Future longitudinal studies are needed to clarify the transient or permanent nature of OB atrophy in COVID-19 pathology.


Subject(s)
COVID-19 , Olfaction Disorders , Female , Humans , Middle Aged , Male , COVID-19/complications , COVID-19/diagnostic imaging , Cross-Sectional Studies , Olfaction Disorders/diagnostic imaging , Olfaction Disorders/etiology , Smell , Magnetic Resonance Imaging , Olfactory Bulb/diagnostic imaging
4.
Turk J Med Sci ; 52(5): 1506-1512, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2101126

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) mostly manifests with fever, shortness of breath, and cough, has also been found to cause some neurological symptoms, such as anosmia and ageusia. The aim of the study was to present the magnetic resonance imaging (MRI) findings of patients with anosmia-hyposmia symptoms and to discuss potential mechanisms in light of these findings. METHODS: Of the 2412 patients diagnosed with COVID-19-related pneumonia (RT-PCR at least once + clinically confirmed) between March and December 2020, 15 patients underwent olfactory MRI to investigate the cause of ongoing anosmia/ hyposmia symptoms were included in the study. RESULTS: Eleven (73.3%) patients were female and four (26.7%) were male. A total of eight patients (53.3%) showed thickening in the olfactory cleft region, where the olfactory epithelium is located. In nine patients (60%), enhancement was observed in the olfactory cleft region. Diffusion-weighted imaging showed restricted diffusion in three patients (20%) (corpus callosum splenium in one patient, thalamus mediodorsal nucleus in one patient, and mesencephalon in one patient). DISCUSSION: This study revealed that there is a relationship between anosmia and MRI findings. Larger studies can enlighten the pathophysiological mechanism and shed light on both diagnosis and new treatments.


Subject(s)
COVID-19 , Olfaction Disorders , Humans , Male , Female , Anosmia/diagnostic imaging , Anosmia/etiology , COVID-19/complications , COVID-19/diagnostic imaging , Olfaction Disorders/diagnostic imaging , Olfaction Disorders/etiology , Magnetic Resonance Imaging , Corpus Callosum/pathology
5.
Acta Neurol Scand ; 146(2): 194-198, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1807012

ABSTRACT

BACKGROUND: Olfactory dysfunction is common during SARS-CoV-2 infection. The pathophysiology of the persistence of this symptom and the potential relationship with central nervous system involvement is unknown. AIM OF THE STUDY: To evaluate the neural correlates of persistent olfactory dysfunction in a series of patients with post-COVID syndrome. METHODS: Eighty-two patients with post-COVID syndrome were assessed with the Brief Smell Identification Test and a multimodal MRI study including 3D-T1, T2-FLAIR, diffusion-tensor imaging, and arterial spin labeling. Olfactory and neuroimaging examinations were performed 11.18 ± 3.78 months after the acute infection. Voxel-based brain mapping analyses were conducted to correlate the olfactory test with brain volumes, white matter microstructure, and brain perfusion. RESULTS: Olfactory dysfunction was associated with lower tissue perfusion in the orbital and medial frontal regions in the arterial spin labeling sequence. Conversely, no statistically significant findings were detected in brain volumes and diffusion-tensor imaging. Mild changes in paranasal sinuses and nasal cavities were detected in 9.75% of cases, with no association with olfactory deficits. CONCLUSIONS: We provide new insights regarding the pathophysiology of persistent olfactory dysfunction after COVID-19, involving the main brain regions associated with the olfactory system.


Subject(s)
COVID-19 , Olfaction Disorders , COVID-19/complications , Frontal Lobe/diagnostic imaging , Humans , Olfaction Disorders/diagnostic imaging , Olfaction Disorders/etiology , Perfusion , SARS-CoV-2 , Smell
6.
Semin Ultrasound CT MR ; 43(5): 371-377, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1774013

ABSTRACT

The human sense of smell is the unique sense through which the olfactory system can identify aromatic molecules within the air and provide a taste sensation. Still, also it plays an essential role in several other functions, warning about environmental safety and even impacts our emotional lives. Recently, olfactory impairment has become an issue of interest due to the COVID-19 pandemic. The dysfunction may vary from only reduced smell detection (hyposmia) to complete loss of it (anosmia) but also includes changes in the normal perception of odors (parosmia). Computed tomography and magnetic imaging resonance are the modalities of choice to evaluate the olfactory pathways. Computed tomography is the initial imaging modality for olfactory disturbances, allowing recognition of sinonasal pathologies, inflammatory processes, or bone-related tumors. Magnetic imaging resonance with dedicated protocols for olfactory disorders enables a detailed assessment of the sinonasal compartment and the anterior cranial fossa. Provides a better depiction of olfactory bulb volume, morphology and signal intensity, as well the status of signal intensity of the central olfactory projection areas. Several diseases can affect the olfactory nerve, such as congenital disorders, trauma, inflammatory or infectious diseases, neoplasms, and even post-operative involvement. This article aims to review the normal anatomy of the olfactory nerve pathway and highlight the spectrum of conditions that most commonly affect it.


Subject(s)
COVID-19 , Olfaction Disorders , Humans , Olfaction Disorders/congenital , Olfaction Disorders/diagnostic imaging , Olfactory Bulb/pathology , Olfactory Nerve/diagnostic imaging , Olfactory Nerve/pathology , Pandemics
7.
Laryngoscope ; 132(6): 1260-1274, 2022 06.
Article in English | MEDLINE | ID: covidwho-1750413

ABSTRACT

OBJECTIVE: Olfactory dysfunction (OD) is a common presenting symptom of COVID-19 infection. Radiological imaging of the olfactory structures in patients with COVID-19 and OD can potentially shed light on its pathogenesis, and guide clinicians in prognostication and intervention. METHODS: PubMed, Embase, Cochrane, SCOPUS were searched from inception to August 1, 2021. Three reviewers selected observational studies, case series, and case reports reporting radiological changes in the olfactory structures, detected on magnetic resonance imaging, computed tomography, or other imaging modalities, in patients aged ≥18 years with COVID-19 infection and OD, following preferred reporting items for systematic reviews and meta-analyses guidelines and a PROSPERO-registered protocol (CRD42021275211). We described the proportion of radiological outcomes, and used random-effects meta-analyses to pool the prevalence of olfactory cleft opacification, olfactory bulb signal abnormalities, and olfactory mucosa abnormalities in patients with and without COVID-19-associated OD. RESULTS: We included 7 case-control studies (N = 353), 11 case series (N = 154), and 12 case reports (N = 12). The pooled prevalence of olfactory cleft opacification in patients with COVID-19 infection and OD (63%, 95% CI = 0.38-0.82) was significantly higher than that in controls (4%, 95% CI = 0.01-0.13). Conversely, similar proportions of cases and controls demonstrated olfactory bulb signal abnormalities (88% and 94%) and olfactory mucosa abnormalities (2% and 0%). Descriptive analysis found that 55.6% and 43.5% of patients with COVID-19 infection and OD had morphological abnormalities of the olfactory bulb and olfactory nerve, respectively, while 60.0% had abnormal olfactory bulb volumes. CONCLUSION: Our findings implicate a conductive mechanism of OD, localized to the olfactory cleft, in approximately half of the affected COVID-19 patients. Laryngoscope, 132:1260-1274, 2022.


Subject(s)
COVID-19 , Olfaction Disorders , Adolescent , Adult , COVID-19/diagnostic imaging , Humans , Olfaction Disorders/diagnostic imaging , Olfaction Disorders/etiology , Olfactory Bulb/diagnostic imaging , Olfactory Mucosa , Smell
8.
J Neuroradiol ; 49(4): 329-332, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1740062

ABSTRACT

BACKGROUND: Olfactory dysfunction (OD) has been reported with a high prevalence on mild to moderate COVID-19 patients. Previous reports suggest that volume and signal intensity of olfactory bulbs (OB) have been reported as abnormal on acute phase of COVID-19 anosmia, but a prospective MRI and clinical follow-up study of COVID-19 patients presenting with OD was missing, aiming at understanding the modification of OB during patients'follow-up. METHODS: A prospective multicenter study was conducted including 11 COVID-19 patients with OD. Patients underwent MRI and psychophysical olfactory assessments at baseline and 6-month post-COVID-19. T2 FLAIR-Signal intensity ratio (SIR) was measured between the average signal of the OB and the average signal of white matter. OB volumes and obstruction of olfactory clefts (OC) were evaluated at both evaluation times. RESULTS: The psychophysical evaluations demonstrated a 6-month recovery in 10/11 patients (90.9%). The mean values of OB-SIR significantly decreased from baseline (1.66±0.24) to 6-month follow-up (1.35±0.27), reporting a mean variation of -17.82±15.20 % (p<0.001). The mean values of OB volumes significantly decreased from baseline (49.22±10.46 mm3) to 6-month follow-up (43.70±9.88 mm3), (p=0.006). CONCLUSION: Patients with demonstrated anosmia reported abnormalities in OB imaging that may be objectively evaluated with the measurement of SIR and OB volumes. SIR and OB volumes significantly normalized when patient recovered smell. This supports the underlying mechanism of a transient inflammation of the OB as a cause of Olfactory Dysfunction in COVID-19 patients.


Subject(s)
COVID-19 , Olfaction Disorders , Anosmia/diagnostic imaging , Anosmia/etiology , COVID-19/complications , Follow-Up Studies , Humans , Magnetic Resonance Imaging/adverse effects , Olfaction Disorders/diagnostic imaging , Olfaction Disorders/etiology , Olfactory Bulb/diagnostic imaging , Prospective Studies , Smell
9.
Eur J Nucl Med Mol Imaging ; 49(6): 1939-1950, 2022 05.
Article in English | MEDLINE | ID: covidwho-1606686

ABSTRACT

PURPOSE: Hyposmia is a common feature of COVID-19 and Parkinson's disease (PD). As parkinsonism has been reported after COVID-19, a link has been hypothesized between SARS-CoV2 infection and PD. We aimed to evaluate brain metabolic correlates of isolated persistent hyposmia after mild-to-moderate COVID-19 and to compare them with metabolic signature of hyposmia in drug-naïve PD patients. METHODS: Forty-four patients who experienced hyposmia after SARS-COV2 infection underwent brain [18F]-FDG PET in the first 6 months after recovery. Olfaction was assessed by means of the 16-item "Sniffin' Sticks" test and patients were classified as with or without persistent hyposmia (COVID-hyposmia and COVID-no-hyposmia respectively). Brain [18F]-FDG PET of post-COVID subgroups were compared in SPM12. COVID-hyposmia patients were also compared with eighty-two drug-naïve PD patients with hyposmia. Multiple regression analysis was used to identify correlations between olfactory test scores and brain metabolism in patients' subgroups. RESULTS: COVID-hyposmia patients (n = 21) exhibited significant hypometabolism in the bilateral gyrus rectus and orbitofrontal cortex with respect to COVID-non-hyposmia (n = 23) (p < 0.002) and in middle and superior temporal gyri, medial/middle frontal gyri, and right insula with respect to PD-hyposmia (p < 0.012). With respect to COVID-hyposmia, PD-hyposmia patients showed hypometabolism in inferior/middle occipital gyri and cuneus bilaterally. Olfactory test scores were directly correlated with metabolism in bilateral rectus and medial frontal gyri and in the right middle temporal and anterior cingulate gyri in COVID-hyposmia patients (p < 0.006) and with bilateral cuneus/precuneus and left lateral occipital cortex in PD-hyposmia patients (p < 0.004). CONCLUSION: Metabolic signature of persistent hyposmia after COVID-19 encompasses cortical regions involved in olfactory perception and does not overlap metabolic correlates of hyposmia in PD.


Subject(s)
COVID-19 , Olfaction Disorders , Parkinson Disease , Anosmia , COVID-19/complications , Fluorodeoxyglucose F18 , Humans , Olfaction Disorders/complications , Olfaction Disorders/diagnostic imaging , Parkinson Disease/complications , Parkinson Disease/diagnostic imaging , RNA, Viral , SARS-CoV-2 , Smell
10.
Lancet Neurol ; 20(9): 753-761, 2021 09.
Article in English | MEDLINE | ID: covidwho-1599333

ABSTRACT

BACKGROUND: The mechanisms by which any upper respiratory virus, including SARS-CoV-2, impairs chemosensory function are not known. COVID-19 is frequently associated with olfactory dysfunction after viral infection, which provides a research opportunity to evaluate the natural course of this neurological finding. Clinical trials and prospective and histological studies of new-onset post-viral olfactory dysfunction have been limited by small sample sizes and a paucity of advanced neuroimaging data and neuropathological samples. Although data from neuropathological specimens are now available, neuroimaging of the olfactory system during the acute phase of infection is still rare due to infection control concerns and critical illness and represents a substantial gap in knowledge. RECENT DEVELOPMENTS: The active replication of SARS-CoV-2 within the brain parenchyma (ie, in neurons and glia) has not been proven. Nevertheless, post-viral olfactory dysfunction can be viewed as a focal neurological deficit in patients with COVID-19. Evidence is also sparse for a direct causal relation between SARS-CoV-2 infection and abnormal brain findings at autopsy, and for trans-synaptic spread of the virus from the olfactory epithelium to the olfactory bulb. Taken together, clinical, radiological, histological, ultrastructural, and molecular data implicate inflammation, with or without infection, in either the olfactory epithelium, the olfactory bulb, or both. This inflammation leads to persistent olfactory deficits in a subset of people who have recovered from COVID-19. Neuroimaging has revealed localised inflammation in intracranial olfactory structures. To date, histopathological, ultrastructural, and molecular evidence does not suggest that SARS-CoV-2 is an obligate neuropathogen. WHERE NEXT?: The prevalence of CNS and olfactory bulb pathosis in patients with COVID-19 is not known. We postulate that, in people who have recovered from COVID-19, a chronic, recrudescent, or permanent olfactory deficit could be prognostic for an increased likelihood of neurological sequelae or neurodegenerative disorders in the long term. An inflammatory stimulus from the nasal olfactory epithelium to the olfactory bulbs and connected brain regions might accelerate pathological processes and symptomatic progression of neurodegenerative disease. Persistent olfactory impairment with or without perceptual distortions (ie, parosmias or phantosmias) after SARS-CoV-2 infection could, therefore, serve as a marker to identify people with an increased long-term risk of neurological disease.


Subject(s)
COVID-19/complications , COVID-19/diagnostic imaging , Olfaction Disorders/diagnostic imaging , Olfaction Disorders/etiology , Olfactory Mucosa/diagnostic imaging , Brain/diagnostic imaging , Brain/physiopathology , Brain/virology , COVID-19/physiopathology , Humans , Neurodegenerative Diseases/diagnostic imaging , Neurodegenerative Diseases/etiology , Neurodegenerative Diseases/physiopathology , Olfaction Disorders/physiopathology , Olfaction Disorders/virology , Olfactory Mucosa/physiopathology , Olfactory Mucosa/virology , Prospective Studies , Smell/physiology
11.
Rev Assoc Med Bras (1992) ; 67(10): 1491-1497, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1562390

ABSTRACT

OBJECTIVE: This study aimed to investigate whether the volume and morphology of the olfactory bulb are effective in the occurrence of anosmia in patients after COVID-19 infection. METHODS: The olfactory bulbus volume was calculated by examining the brain magnetic resonance imaging of cases with positive (+) COVID-19 polymerase chain reaction test with and without anosmia. Evaluated magnetic resonance imaging images were the scans of patients before they were infected with COVID-19. The olfactory bulbus and olfactory nerve morphology of these patients were examined. The brain magnetic resonance imaging of 59 patients with anosmia and 64 controls without anosmia was evaluated. The olfactory bulb volumes of both groups were calculated. The olfactory bulb morphology and olfactory nerve types were examined and compared between the two groups. RESULTS: The left and right olfactory bulb volumes were calculated for the anosmia group and control group as 47.8±15/49.3±14.3 and 50.5±9.9/50.9±9.6, respectively. There was no statistically significant difference between the two groups. When the olfactory bulb morphology was compared between the two groups, it was observed that types D and R were dominant in the anosmia group (p<0.05). Concerning olfactory nerve morphology, type N was significantly more common in the control group (p<0.05). CONCLUSIONS: According to our results, the olfactory bulb volume does not affect the development of anosmia after COVID-19. However, it is striking that the bulb morphology significantly differs between the patients with and without anosmia. It is clear that the evaluation of COVID-19-associated smell disorders requires studies with a larger number of patients and a clinicoradiological approach.


Subject(s)
COVID-19 , Olfaction Disorders , Anosmia , Humans , Magnetic Resonance Imaging , Olfaction Disorders/diagnostic imaging , Olfactory Bulb/diagnostic imaging , SARS-CoV-2
12.
Acad Radiol ; 28(11): 1530-1540, 2021 11.
Article in English | MEDLINE | ID: covidwho-1377636

ABSTRACT

RATIONALE AND OBJECTIVES: Hyposmia/anosmia is common among patients with coronavirus disease-2019 (COVID-19). Various imaging modalities have been used to assess olfactory dysfunction in COVID-19. In this systematic review, we sought to categorize and summarize the imaging data in COVID-19-induced anosmia. MATERIAL AND METHODS: Eligible articles were included after a comprehensive review using online databases including Google scholar, Scopus, PubMed, Web of science and Elsevier. Duplicate results, conference abstracts, reviews, and studies in languages other than English were excluded. RESULTS: In total, 305 patients undergoing MRI/functional MRI (177), CT of paranasal sinuses (129), and PET/CT or PET/MRI scans (14) were included. Out of a total of 218 findings reported on MRI, 80 were reported on early (≤ 1 month) and 85 on late (>1 month) imaging in relation to the onset of anosmia. Overall, OB morphology and T2-weighted or FLAIR signal intensity were normal in 68/218 (31.2%), while partial or complete opacification of OC was observed in 60/218 (27.5%). T2 hyperintensity in OB was detected in 11/80 (13.75%) and 18/85 (21.17%) on early and late imaging, respectively. Moreover, OB atrophy was reported in 1/80 (1.25%) on early and in 9/85 (10.58%) on late imaging. Last, among a total of 129 CT scans included, paranasal sinuses were evalualted in 88 (68.21%), which were reported as normal in most cases (77/88, [87.5%]). CONCLUSION: In this systematic review, normal morphology and T2/FLAIR signal intensity in OB and OC obstruction were the most common findings in COVID-19-induced anosmia, while paranasal sinuses were normal in most cases. OC obstruction is the likely mechanism for olfactory dysfunction in COVID-19. Abnormalities in OB signal intensity and OB atrophy suggest that central mechanisms may also play a role in late stage in COVID-19-induced anosmia.


Subject(s)
COVID-19 , Olfaction Disorders , Humans , Magnetic Resonance Imaging , Olfaction Disorders/diagnostic imaging , Positron Emission Tomography Computed Tomography , SARS-CoV-2
13.
Semin Cell Dev Biol ; 129: 22-30, 2022 09.
Article in English | MEDLINE | ID: covidwho-1373267

ABSTRACT

Olfactory dysfunction is often the earliest indicator of disease in a range of neurological and psychiatric disorders. One tempting working hypothesis is that pathological changes in the peripheral olfactory system where the body is exposed to many adverse environmental stressors may have a causal role for the brain alteration. Whether and how the peripheral pathology spreads to more central brain regions may be effectively studied in rodent models, and there is successful precedence in experimental models for Parkinson's disease. It is of interest to study whether a similar mechanism may underlie the pathology of psychiatric illnesses, such as schizophrenia. However, direct comparison between rodent models and humans includes challenges under light of comparative neuroanatomy and experimental methodologies used in these two distinct species. We believe that neuroimaging modality that has been the main methodology of human brain studies may be a useful viewpoint to address and fill the knowledge gap between rodents and humans in this scientific question. Accordingly, in the present review article, we focus on brain imaging studies associated with olfaction in healthy humans and patients with neurological and psychiatric disorders, and if available those in rodents. We organize this review article at three levels: 1) olfactory bulb (OB) and peripheral structures of the olfactory system, 2) primary olfactory cortical and subcortical regions, and 3) associated higher-order cortical regions. This research area is still underdeveloped, and we acknowledge that further validation with independent cohorts may be needed for many studies presented here, in particular those with human subjects. Nevertheless, whether and how peripheral olfactory disturbance impacts brain function is becoming even a hotter topic in the ongoing COVID-19 pandemic, given the risk of long-term changes of mental status associated with olfactory infection of SARS-CoV-2. Together, in this review article, we introduce this underdeveloped but important research area focusing on its implications in neurological and psychiatric disorders, with several pioneered publications.


Subject(s)
COVID-19 , Olfaction Disorders , Humans , Neuroimaging/adverse effects , Olfaction Disorders/diagnostic imaging , Olfaction Disorders/etiology , Olfaction Disorders/pathology , Olfactory Bulb/anatomy & histology , Olfactory Bulb/pathology , Pandemics , SARS-CoV-2 , Smell
14.
Acta Otolaryngol ; 141(8): 786-790, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1319071

ABSTRACT

BACKGROUND: Although there are a limited number of studies investigating the changes in olfactory bulb volume (OBV) and olfactory sulcus depth (OSD) values in the acute and subacute periods after COVID-19 infection, there are no studies conducted in the chronic period. PURPOSE: The aim of this study is to reveal the changes in OBV and OSD after COVID-19 in the chronic period. MATERIAL AND METHODS: A total of 83 people were included in our study, including 42 normal healthy individuals (control group) and 41 patients with COVID-19 infection (10-12 months after infection). RESULTS: The COVID-19 group included 41 patients with the mean age 40.27 ± 14.5 years and the control group included 42 individuals with the mean age 40.27 ± 14.4. The mean OBV was 67.97 ± 14.27 mm3 in the COVID-19 group and 94.21 ± 7.56 mm3 in the control group. The mean OSD was 7.98 ± 0.37 mm in the COVID-19 group and 8.82 ± 0.74 mm in the control group. Left, right, and mean OBVs and OSD were significantly lower in patients with COVID- 19 than the control individuals (all p < .05). CONCLUSION: Our findings show that COVID-19 infection causes a significant decrease in the OBV and OSD measurements in the chronic period.


Subject(s)
COVID-19/complications , COVID-19/pathology , Olfaction Disorders/pathology , Olfaction Disorders/virology , Olfactory Bulb/pathology , Prefrontal Cortex/pathology , Aged , COVID-19/diagnostic imaging , Case-Control Studies , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Olfaction Disorders/diagnostic imaging , Olfactory Bulb/diagnostic imaging , Organ Size , Prefrontal Cortex/diagnostic imaging , Prospective Studies
15.
Acta Radiol ; 63(9): 1233-1242, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1318266

ABSTRACT

BACKGROUND: Coronaviruses may lead to invasion of the central nervous system. PURPOSE: To investigate the effects of COVID-19 infection on smell using cranial magnetic resonance imaging (MRI). MATERIAL AND METHODS: Cranial MRI scans of 23 patients with COVID-19 (patient group [PG]) and 23 healthy controls (HCs) were evaluated. Peripheric (olfactory bulb [OB] volume and olfactory sulcus [OS] depth) and central (insular gyrus and corpus amygdala areas) smell regions were measured. RESULTS: Smell loss was present in nine patients (39.1%) in the PG. The means of the disease duration and antiviral treatment were 3.00 ± 2.35 and 5.65 ± 1.72 days, respectively. OB volumes of the PG were significantly lower than those of the HCs bilaterally. However, no significant differences were observed between the OS depth, insular gyrus, and corpus amygdala areas of both groups. The left corpus amygdala areas were both increased with the increased disease (P = 0.035, r = 0.442) and treatment durations (P = 0.037, r = 0.438). In the PG, longer treatment duration, increase in C-reactive protein (CRP), lymphocyte count decrease, and positive thoracic computed tomography (CT) involvement were related to OS depth decrease. Right corpus amygdala areas increased in patients with COVID-19 with increased D-dimer values, and thoracic CT involvement was detected. CONCLUSION: COVID-19 disease affects the peripheric smell region of OBs and does not affect the central smell regions of the insular gyrus and corpus amygdala areas. The importance of our study is to detect MRI findings in patients with COVID-19 leading to odor disorders. These findings may help in diagnosing the disease at an early stage.


Subject(s)
COVID-19 , Olfaction Disorders , COVID-19/complications , Humans , Magnetic Resonance Imaging , Olfaction Disorders/diagnostic imaging , Olfaction Disorders/pathology , Olfactory Bulb/pathology , Smell
16.
Top Magn Reson Imaging ; 30(3): 133-137, 2021 Jun 01.
Article in English | MEDLINE | ID: covidwho-1258827

ABSTRACT

ABSTRACT: Olfactory dysfunction related to SARS-CoV-2 infection and COVID-19 disease is now well established in the literature. In December 2020, the FDA approved the Pfizer-BioNTech and Moderna vaccines for use in preventing COVID-19 in the United States. To the best of our knowledge, this is the first report of a phantosmia post-Pfizer COVID-19 vaccination, with positive magnetic resonance imaging radiographic findings in a patient with documented absence of infection by SARS-CoV-2 virus or concomitant sinonasal disease.


Subject(s)
COVID-19 Vaccines/adverse effects , Hallucinations/diagnostic imaging , Hallucinations/etiology , Olfaction Disorders/diagnostic imaging , Olfaction Disorders/etiology , Humans , Magnetic Resonance Imaging , Radiography
19.
AJNR Am J Neuroradiol ; 41(9): 1703-1706, 2020 09.
Article in English | MEDLINE | ID: covidwho-1024494

ABSTRACT

Patients with coronavirus disease 2019 (COVID-19) may have symptoms of anosmia or partial loss of the sense of smell, often accompanied by changes in taste. We report 5 cases (3 with anosmia) of adult patients with COVID-19 in whom injury to the olfactory bulbs was interpreted as microbleeding or abnormal enhancement on MR imaging. The patients had persistent headache (n = 4) or motor deficits (n = 1). This olfactory bulb injury may be the mechanism by which the Severe Acute Respiratory Syndrome coronavirus 2 causes olfactory dysfunction.


Subject(s)
Betacoronavirus , Coronavirus Infections/complications , Olfaction Disorders/etiology , Olfactory Bulb/diagnostic imaging , Pneumonia, Viral/complications , COVID-19 , Coronavirus Infections/diagnostic imaging , Humans , Magnetic Resonance Imaging , Olfaction Disorders/diagnostic imaging , Olfactory Bulb/injuries , Pandemics , Pneumonia, Viral/diagnostic imaging , SARS-CoV-2 , Smell , Taste
20.
Acad Radiol ; 28(1): 28-35, 2021 01.
Article in English | MEDLINE | ID: covidwho-1023395

ABSTRACT

BACKGROUND AND PURPOSE: There is limited literature consisting of case reports or series on olfactory bulb imaging in COVID-19 olfactory dysfunction. An imaging study with objective clinical correlation is needed in COVID-19 anosmia in order to better understand underlying pathogenesis. MATERIAL AND METHODS: We evaluated 23 patients with persistent COVID-19 olfactory dysfunction. Patients included in this study had a minimum 1-month duration between onset of olfactory dysfunction and evaluation. Olfactory functions were evaluated with Sniffin' Sticks Test. Paranasal sinus CTs and MRI dedicated to olfactory nerves were acquired. On MRI, quantitative measurements of olfactory bulb volumes and olfactory sulcus depth and qualitative assessment of olfactory bulb morphology, signal intensity, and olfactory nerve filia architecture were performed. RESULTS: All patients were anosmic at the time of imaging based on olfactory test results. On CT, Olfactory cleft opacification was seen in 73.9% of cases with a mid and posterior segment dominance. 43.5% of cases had below normal olfactory bulb volumes and 60.9% of cases had shallow olfactory sulci. Of all, 54.2% of cases had changes in normal inverted J shape of the bulb. 91.3% of cases had abnormality in olfactory bulb signal intensity in the forms of diffusely increased signal intensity, scattered hyperintense foci or microhemorrhages. Evident clumping of olfactory filia was seen in 34.8% of cases and thinning with scarcity of filia in 17.4%. Primary olfactory cortical signal abnormality was seen in 21.7% of cases. CONCLUSION: Our findings indicate olfactory cleft and olfactory bulb abnormalities are seen in COVID-19 anosmia. There was a relatively high percentage of olfactory bulb degeneration. Further longitudinal imaging studies could shed light on the mechanism of olfactory neuronal pathway injury in COVID-19 anosmia.


Subject(s)
COVID-19 , Olfaction Disorders , Anosmia , Humans , Magnetic Resonance Imaging , Olfaction Disorders/diagnostic imaging , Olfactory Bulb/diagnostic imaging , Pandemics , SARS-CoV-2 , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL